normaliser$544718$ - tradução para holandês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

normaliser$544718$ - tradução para holandês

SUBGROUP OF A GROUP G THAT EACH LEAVES INVARIANT EACH ELEMENT OF A GIVEN SUBSET OF A G-SET
Normalizer; Centralizer; Commutant; Self-normalizing subgroup; Centraliser; Normaliser; Self-normalizing; Self-normalising; Centralizer & normalizer; N/C theorem; Centralizer (ring theory); C closed subgroup; C-closed subgroup; C-closed subgroups; Centralizer (Lie algebra); Normalizer (group theory)

normaliser      
n. iem. die iets in overeenstemming brengt met een norm

Wikipédia

Centralizer and normalizer

In mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set C G ( S ) {\displaystyle \operatorname {C} _{G}(S)} of elements of G that commute with every element of S, or equivalently, such that conjugation by g {\displaystyle g} leaves each element of S fixed. The normalizer of S in G is the set of elements N G ( S ) {\displaystyle \mathrm {N} _{G}(S)} of G that satisfy the weaker condition of leaving the set S G {\displaystyle S\subseteq G} fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.

Suitably formulated, the definitions also apply to semigroups.

In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring R is a subring of R. This article also deals with centralizers and normalizers in a Lie algebra.

The idealizer in a semigroup or ring is another construction that is in the same vein as the centralizer and normalizer.